Pydantic AI Testing & Evaluation
AgentCI provides first-class Pydantic AI testing and evaluation capabilities for type-safe agent applications. Our automated Pydantic AI CI platform discovers all your Agent instances and validates them against comprehensive evaluation suites - leveraging your existing type safety without any code modifications.
Pydantic AI agent testing that works with your existing codebase
AgentCI automatically discovers and evaluates Pydantic AI agents, including:
- Agent discovery:
Agent()instances withmodelandsystem_promptconfigurations - Evaluation types: Accuracy, safety, and performance testing with type validation
- CI/CD integration: Automated testing on pull requests via GitHub
- Zero code changes: No additional decorators or modifications to your Python code required
Supported Agent Patterns
Agent Class
from pydantic_ai import Agent
agent = Agent(
model='claude-3-haiku-20240307',
system_prompt="""You are a customer service representative.
Your responsibilities:
- Address customer concerns promptly
- Escalate complex issues when needed
- Maintain a friendly and helpful tone"""
)
Supported Tool Patterns
Plain Functions
from typing import Optional
from datetime import datetime
def get_current_time() -> str:
"""Get the current time as a string."""
return datetime.now().isoformat()
def calculate_metrics(values: list[float], metric_type: str = "mean") -> float:
"""Calculate various metrics from a list of values."""
if not values:
return 0.0
if metric_type == "mean":
return sum(values) / len(values)
elif metric_type == "max":
return max(values)
return 0.0
What Gets Auto-Discovered
AgentCI automatically finds:
Agent()instances withmodelandsystem_promptparameters- Plain Python functions with docstrings and type annotations
- Async functions used as tools
No decorators or special tool classes required - Pydantic AI's type-safe approach works seamlessly with AgentCI's auto-discovery.